On Baire functions on infinite product spaces
نویسندگان
چکیده
منابع مشابه
Recovering Baire One Functions on Ultrametric Spaces
We find a characterization of those Polish ultrametric spaces on which each Baire one function is first return recoverable. The notion of pseudo-convergence originating in the theory of valuation fields plays a crucial role in the characterization.
متن کاملA note on Volterra and Baire spaces
In Proposition 2.6 in (G. Gruenhage, A. Lutzer, Baire and Volterra spaces, textit{Proc. Amer. Math. Soc.} {128} (2000), no. 10, 3115--3124) a condition that every point of $D$ is $G_delta$ in $X$ was overlooked. So we proved some conditions by which a Baire space is equivalent to a Volterra space. In this note we show that if $X$ is a monotonically normal $T_1...
متن کاملQuestions on generalised Baire spaces
When studying questions about real numbers, it is common practice in set theory to investigate the closely related Baire space ω and Cantor space 2 . These spaces have been extensively studied by set theorists from various points of view, e.g., questions about cardinal characteristics of the continuum, descriptive set theory and other combinatorial questions. Furthermore, the investigation of 2...
متن کاملcompactifications and function spaces on weighted semigruops
chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...
15 صفحه اولOn Baire and Harmonic Functions
We consider two spaces of harmonic functions. First, the space H(U) of functions harmonic on a bounded open subset U of R and continuous to the boundary. Second, the space H0(K) of functions on a compact subset K of R n which can be harmonically extended on some open neighbourhood of K. A bounded open subset U of R is called stable if the space H(U) is equal to the uniform closure of H0(U ). We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences
سال: 1944
ISSN: 0386-2194
DOI: 10.3792/pia/1195572745